Optimised Braking Energy Recovery in Metro and Light Rail Systems

Ricardo Barrero
Project Architect
STIB - MIVB
Overview

• Technologies description
• Methodology
• Ticket to Kyoto experience
 • Reversible substations in the Metro network
• Eliptic Approach
 • Tram Network
• Summary & conclusions
Technologies description
Urban Rail Vehicles: Regenerative Braking & Energy Exchange
Onboard Energy Storage
Reversible Substation
Summary of Technologies

<table>
<thead>
<tr>
<th>Feature</th>
<th>Mobile Storage Systems</th>
<th>Stationary Storage Systems</th>
<th>Reversible Substations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overhead line or third rail losses are reduced.</td>
<td>✗</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>High efficiency due to lower transformation and storage losses.</td>
<td></td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Recovered braking energy can supply any equipment (lighting, escalators, etc.).</td>
<td></td>
<td></td>
<td>✗</td>
</tr>
<tr>
<td>Vehicles can be operated without overhead lines/third rail on short sections.</td>
<td>✗</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The systems can be installed without having to modify the vehicles.</td>
<td></td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Lower safety constraints as not on-board of the vehicle.</td>
<td></td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Tunnels and stations warming can be avoided by reducing the heat produced by the braking resistors.</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Voltage stabilisation and peak-shaving opportunities.</td>
<td>✗</td>
<td>✗</td>
<td></td>
</tr>
</tbody>
</table>
Evaluation of Potential

• Measurements
 • Vehicles power flows and energy consumption
 • Braking resistors energy = Maximum energy savings potential
 • Auxiliaries
 • Traction
 • Energy sent back to the network
 • Substations
 • Energy consumption and power profile
 • OCV and internal impedance
Evaluation of Potential (II)

• Simulations
 • Modelling the network and vehicles “as it is”
 • Validation of the model with measurements
 • Introduction of energy recovery technologies
 → Find the suitable technology and possible solutions

• Business Case
 Investment
 Maintenance/year
 Energy savings/year
 Other costs/benefits (Installation, CO₂, etc)

Economic Indicator:
 ROI
 Payback Time
 ...

ELIPTIC Webinar: Optimised braking energy recovery in electric public transport systems
Simulations: Validation

ELIPTIC Webinar: Optimised braking energy recovery in electric public transport systems

Graphs:

1. Speed \(v\) vs. Time [s]
2. Current \(I_{chopper}\) vs. Time [s]
3. Power \(P_{chopper}\) vs. Time [s]

Legend:

- **Real**
- **Sim**
Simulations: Validation (II)

Measurements May 2011 [%] Simulations May 2011 [%] Substation OCV [V]

Energy restored to the network / Energy consumed for traction [%]

Measurements Simulation

Peak Off-Peak Weekends & Night
Simulation Results

![Graph showing simulation results of inverters energy and substation OCV for different tests.]

- **Inverters Energy [kWh]**
- **Substation OCV [V]**

Tests: Test1, Test2, Test3, Test4

- **Vo**
Simulation Results (II):

Trade-off solution: 6-8 Inverters of 1 to 1.5 MW
Ticket To Kyoto Experience

From evaluation to installation
Tender Process

• Tender answered by 8 companies

 AEG TranzCom Ingeteam SIEMENS

• Each company proposed a solution and estimated the yearly savings
 • Proposals evaluated & challenged by external expert

• After a few corrections, the final proposals from the 3 companies were similar
 → STIB decided to test 3 prototypes in the same conditions
How does a 1.5 MW inverter look?
Trial Phase

- Estimated Payback Time: 5 years (*)
- Differences in Power Factor
- Trial results in line with estimations
Results 2014

• 3 prototypes in the same substation until May

Énergie Récupérée en 2014
Installation and relocation of inverters
Eliptic

Energy Recovery in the Tram Network
Eliptic Approach

• Study of Tram Network
 • Similar approach to the Metro study
 • Higher complexity
 • Interconnected lines
 • Substation feeding different lines
 • Electric feeders and catenary differ in sections
 • Most of the lines are mixed with car traffic

• Use of feedback from real systems installed in the metro lines
Reversible Substations Concept

ELIPTIC Webinar: Optimised braking energy recovery in electric public transport systems
Quick Comparative: Tram vs. Metro

<table>
<thead>
<tr>
<th></th>
<th>Metro</th>
<th>Tram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicles’ Power</td>
<td>> 2 MW</td>
<td>< 600 kW</td>
</tr>
<tr>
<td>Vehicles’ Speed</td>
<td>Higher (up to 70 km/h)</td>
<td>Lower (dependant on traffic)</td>
</tr>
<tr>
<td>Electric Network</td>
<td>Regular feeders and third rail</td>
<td>Irregular feeders and catenary sections</td>
</tr>
<tr>
<td>Auxiliaries’ consumption</td>
<td>Low</td>
<td>High (expected)</td>
</tr>
<tr>
<td>Stations Nearby</td>
<td>Always</td>
<td>Rarely</td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>900 Vdc</td>
<td>700 Vdc</td>
</tr>
<tr>
<td>Electric consumers near the substation</td>
<td>Always (station): escalators, lighting, shops</td>
<td>Rarely</td>
</tr>
</tbody>
</table>
Tram vs. Metro: Voltage drop par km

This parameter influences “How far the braking energy can be sent”

Despite the differences → similar behaviour
Eliptic Timeline

- Lines Selection
- State of the art review
- Analysis of network
- Comparative Metro vs Tram

- Network Model (ongoing)
- Measurements (ongoing)
- Simulations & Validation
- Energy Recovery Simulations
- Business Case
- Reporting
Summary
Summary & Conclusions

- Overview of methodology and Ticket to Kyoto experience

- Lessons learned:
 - Control expertise is crucial
 - The same hardware can have very different results
 - Importance to challenge the supplier proposal by independent consultant
 - Each network is different → Hard to extrapolate results

- Eliptic:
 - Similar methodology will be used
 - Feedback from Ticket to Kyoto will be used